CHARACTERIZATIONS OF HIGHER DERIVATIONS

JIANBIN GUO

Department of Mathematics
East China University of Science and Technology
Shanghai 200237
P. R. China
e-mail: guojianbin19840410@yahoo.com

Abstract

Let \(A \) be a unital algebra and \(D = (\delta_i)_{i \in \mathbb{N}} \) be a family of linear mappings from \(A \) into itself such that \(\delta_0 = id_A \). In this paper, we prove that if
\[
\sum_{i+j+k=n} \delta_i(A)\delta_j(B)\delta_k(C) = 0
\]
for any \(A, B, C \in A \) with \(AB = BC = 0 \) and \(\delta_n(I) = 0 \) for all \(n \geq 1 \), then the restriction \(D = (\delta_i)_{i \in \mathbb{N}} \) to the subalgebra \(\mathcal{R} \) generated by all idempotents of \(A \) is a higher derivation. We also show that this kind of mappings is a higher derivation on \(A \) under some conditions.

1. Introduction

Let \(A \) be a unital algebra. Let \(D = (\delta_i)_{i \in \mathbb{N}} \) be a family of linear mappings from \(A \) into itself such that \(\delta_0 = id_A \). \(D \) is called a higher derivation, if \(\delta_n(AB) = \sum_{i+j=n} \delta_i(A)\delta_j(B) \) for each \(n \in \mathbb{N} \) and \(A, B \in A; D \) is called a Jordan higher derivation, if \(\delta_n(A^2) = \sum_{i+j=n} \delta_i(A)\delta_j(A) \) for each \(n \in \mathbb{N} \) and \(A \in A \). Note that \(\delta_1 \)

2010 Mathematics Subject Classification: Primary 47B47; Secondary 17B40.

Keywords and phrases: derivation, higher derivation, idempotent.

Received March 31, 2011

© 2011 Scientific Advances Publishers
is a Jordan derivation, if \(D = (\delta_i)_{i \in \mathbb{N}} \) is a Jordan higher derivation. It is well known that every derivation is a Jordan derivation and the converse in general is not true. In [8], Herstein showed that every Jordan derivation from a 2-torsion free prime ring into itself is a derivation. In [2], Brešar generalized Herstein’s result to 2-torsion free semiprime rings. Likewise, every higher derivation is a Jordan higher derivation and the converse in general is not true. In [6], Ferrero and Haetinger generalized Brešar’s result to the Jordan higher derivations, they showed that every Jordan higher derivation of a 2-torsion free semiprime ring is a higher derivation. For other related results, see [14, 15].

In general, there are two directions in the study of the local actions of derivations of operator algebras. One is the local derivation problem (for example, see [5, 10, 11]). The other is to study the conditions under which derivations of operator algebras can be completely determined by the action on some sets of operators (for example, see [1, 4, 9, 12]). In [3], Brešar study the local actions of derivations. He proved that if \(\delta \) is an additive mapping from a unital ring \(A \) to a unital \(A \)-bimodule \(M \) such that \(A\delta(B)C = 0 \) for all \(AB = BC = 0 \), then the restriction \(\delta \) to the subring \(\mathcal{R} \) generated by all idempotents of \(A \) is a derivation. In [12], Li and Pan showed that under some conditions, this kind of mappings is a generalized derivation on a unital algebra \(A \). In Section 2, we generalize Brešar’s result and Li’s result to the case of higher derivations, respectively.

2. Main Results

In this section, we always assume that \(A \) is a unital algebra.

Let \(D = (\delta_i)_{i \in \mathbb{N}} \) be a family of linear mappings from \(A \) into itself. We say that \(D = (\delta_i)_{i \in \mathbb{N}} \) satisfies the condition (*) if for each \(A \in A \), any idempotents \(P, Q \in A \) and all \(n \in \mathbb{N} \);

\[
\delta_n(PAQ) = \sum_{i+j=n} \delta_i(PA)\delta_j(Q) + \sum_{i+j=n} \delta_i(P)\delta_j(AQ)
\]
\[- \sum_{i+j+k=n} \delta_i(P) \delta_j(A) \delta_k(Q), \]

and

\[\delta_n(I) = 0, \quad \text{for all } n \geq 1.\]

In order to prove our main result, we first show two lemmas.

Lemma 2.1. Suppose that \(D = (\delta_i)_{i \in \mathbb{N}}\) is a family of linear mappings from \(A\) into itself satisfying condition \((*)\). Then for any idempotents \(P_1, \ldots, P_m\) in \(A\),

1. \(\delta_n(P_1 \cdots P_m) = \sum_{i+j=n} \delta_i(P_1) \delta_j(P_2 \cdots P_m)\),
2. \(\delta_n(P_1 \cdots P_m) = \sum_{i+j=n} \delta_i(P_1 \cdots P_{m-1}) \delta_j(P_m)\).

Proof. We only prove (1), for the proof of (2) is analogous.

When \(m = 1, 2\), by the condition \((*)\), (1) is true. Suppose that if \(m = t\), (1) is true.

For \(m = t + 1\), by the condition \((*)\), it follows that

\[\delta_n(P_1 \cdots P_{t+1}) = \sum_{i+j=n} \delta_i(P_1 \cdots P_t) \delta_j(P_{t+1}) + \sum_{i+j=n} \delta_i(P_1 \cdots P_{t+1}) \delta_j(P_{t+1}) \]

\[- \sum_{i+j+k=n} \delta_i(P_1) \delta_j(P_2 \cdots P_t) \delta_k(P_{t+1}) \]

\[= \sum_{i+j=n} \delta_i(P_1) \delta_j(P_2 \cdots P_{t+1}).\]

This concludes the proof. \(\Box\)

Lemma 2.2. Suppose that \(D = (\delta_i)_{i \in \mathbb{N}}\) is a family of linear mappings from \(A\) into itself satisfying condition \((*)\). Then for any idempotents \(P_1, \ldots, P_m, Q_1, \ldots, Q_s\) in \(A\) and every \(A \in A\),

\[\delta_n(I) = 0, \quad \text{for all } n \geq 1.\]
\[\delta_n(P_1 \cdots P_m AQ_1 \cdots Q_s) \]

\[= \sum_{i+j=n} \delta_i(P_1 \cdots P_m A) \delta_j(Q_1 \cdots Q_s) + \sum_{i+j=n} \delta_i(P_1 \cdots P_m) \delta_j(AQ_1 \cdots Q_s) \]

\[- \sum_{i+j+k=n} \delta_i(P_1 \cdots P_m) \delta_j(A) \delta_k(Q_1 \cdots Q_s). \]

(2.1)

Proof. We first show that for any positive integer \(m \),

\[\delta_n(P_1 \cdots P_m AQ) = \sum_{i+j=n} \delta_i(P_1 \cdots P_m A) \delta_j(Q) + \sum_{i+j=n} \delta_i(P_1 \cdots P_m) \delta_j(AQ) \]

\[- \sum_{i+j+k=n} \delta_i(P_1 \cdots P_m) \delta_j(A) \delta_k(Q). \]

(2.2)

If \(m = 1 \), by the condition (*), (2.2) is true. Suppose that if \(m = t \), (2.2) is true.

For \(m = t + 1 \), by the condition (*) and Lemma 2.1, it follows that

\[\delta_n(P_1 \cdots P_{t+1} AQ) \]

\[= \sum_{i+j=n} \delta_i(P_1 \cdots P_{t+1} A) \delta_j(Q) + \sum_{i+j=n} \delta_i(P_1) \delta_j(P_2 \cdots P_{t+1} AQ) \]

\[- \sum_{i+j+k=n} \delta_i(P_1) \delta_j(P_2 \cdots P_{t+1} A) \delta_k(Q) \]

\[= \sum_{i+j=n} \delta_i(P_1 \cdots P_{t+1} A) \delta_j(Q) + \sum_{i+j+k=n} \delta_i(P_1) \delta_j(P_2 \cdots P_{t+1}) \delta_k(AQ) \]

\[- \sum_{i+j+k+l=n} \delta_i(P_1) \delta_j(P_2 \cdots P_{t+1}) \delta_k(A) \delta_l(Q) \]

\[= \sum_{i+j=n} \delta_i(P_1 \cdots P_{t+1} A) \delta_j(Q) + \sum_{i+j=n} \delta_i(P_1 P_2 \cdots P_{t+1}) \delta_j(AQ) \]

\[- \sum_{i+j+k=n} \delta_i(P_1 P_2 \cdots P_{t+1}) \delta_j(A) \delta_k(Q). \]
Now, we show (2.1) is true.

If \(s = 1 \), by (2.2), (2.1) is true. Suppose that if \(s = t \), (2.1) is true.

For \(s = t + 1 \), by (2.2), the condition (*) and Lemma 2.1, it follows that
\[
\delta_n(P_1 \cdots P_mA Q_l \cdots Q_{t+1})
\]
\[
= \sum_{i+j=n} \delta_i(P_1 \cdots P_m A Q_l \cdots Q_{t+1}) \delta_j(Q_{t+1}) + \sum_{i+j=n} \delta_i(P_1 P_2 \cdots P_m) \delta_j(A Q_l \cdots Q_{t+1})
\]
\[
- \sum_{i+j+k=n} \delta_i(P_1 P_2 \cdots P_m) \delta_j(A Q_l \cdots Q_{t+1}) \delta_k(Q_{t+1})
\]
\[
= \sum_{i+j+k=n} \delta_i(P_1 \cdots P_m A) \delta_j(Q_1 \cdots Q_{t+1}) \delta_k(Q_{t+1})
\]
\[
+ \sum_{i+j=n} \delta_i(P_1 P_2 \cdots P_m) \delta_j(A Q_l \cdots Q_{t+1})
\]
\[
- \sum_{i+j+k+l=n} \delta_i(P_1 \cdots P_m A) \delta_j(A) \delta_k(Q_1 \cdots Q_{t+1}) \delta_l(Q_{t+1})
\]
\[
= \sum_{i+j=n} \delta_i(P_1 \cdots P_m A) \delta_j(Q_1 \cdots Q_{t+1}) + \sum_{i+j=n} \delta_i(P_1 P_2 \cdots P_m) \delta_j(A Q_l \cdots Q_{t+1})
\]
\[
- \sum_{i+j+k=n} \delta_i(P_1 \cdots P_m A) \delta_j(A) \delta_k(Q_1 \cdots Q_{t+1}).
\]

This concludes the proof. \(\square \)

Theorem 2.3. Let \(A \) be a unital algebra and \(B \) be the subalgebra generated by all idempotents in \(A \). If \(D = (\delta_i)_{i \in \mathbb{N}} \) is a family of linear mappings from \(A \) into itself such that \(\delta_n(ABC) = \sum_{i+j+k=n} \delta_i(A) \delta_j(B) \delta_k(C) \) for any \(A, B, C \in A \) with \(AB = BC = 0 \) and \(\delta_n(I) = 0 \) for all \(n \geq 1 \), then the restriction of \(D = (\delta_i)_{i \in \mathbb{N}} \) to \(B \) is a higher derivation.
Proof. Let P and Q be two idempotents in \mathcal{A}. Since for every $A, I, Q \in A$,

\[
(I - P)PAQ = PAQ(I - Q) = 0,
\]

\[
P(I - P)AQ = (I - P)AQ(I - Q) = 0,
\]

\[
(I - P)PA(I - Q) = PA(I - Q)Q = 0,
\]

\[
P(I - P)A(I - Q) = (I - P)A(I - Q)Q = 0,
\]

we have

\[
\sum_{i+j+k=n} \delta_i(I - P) \delta_j(PAQ) \delta_k(I - Q) = 0,
\]

\[
\sum_{i+j+k=n} \delta_i(P) \delta_j((I - P)AQ) \delta_k(I - Q) = 0,
\]

\[
\sum_{i+j+k=n} \delta_i(I - P) \delta_j(PA(I - Q)) \delta_k(Q) = 0,
\]

\[
\sum_{i+j+k=n} \delta_i(P) \delta_j((I - P)A(I - Q)) \delta_k(Q) = 0.
\]

For convenience, we rewrite these identities as

\[
\delta_n(PAQ) = \sum_{i+j=n} \delta_i(PAQ) \delta_j(Q) + \sum_{i+j=n} \delta_i(P) \delta_j(PAQ)
\]

\[
- \sum_{i+j+k=n} \delta_i(P) \delta_j(PAQ) \delta_k(Q),
\]

\[
- \sum_{i+j=n} \delta_i(P) \delta_j(AQ) = - \sum_{i+j=n} \delta_i(P) \delta_j(PAQ)
\]

\[
- \sum_{i+j+k=n} \delta_i(P) \delta_j(AQ) \delta_k(Q)
\]

\[
+ \sum_{i+j+k=n} \delta_i(P) \delta_j(PAQ) \delta_k(Q),
\]

\[
- \sum_{i+j=n} \delta_i(PA) \delta_j(Q) = - \sum_{i+j=n} \delta_i(PAQ) \delta_j(Q)
\]
\[- \sum_{i+j+k=n} \delta_i(P) \delta_j(PA) \delta_k(Q) + \sum_{i+j+k=n} \delta_i(P) \delta_j(PAQ) \delta_k(Q) + \sum_{i+j+k=n} \delta_i(P) \delta_j(A) \delta_k(Q) - \sum_{i+j+k=n} \delta_i(P) \delta_j(A) \delta_k(Q).\]

Note that the sum of the right-hand sides of these four identities is 0. Therefore, the sum of the left-hand sides must be 0. Hence,
\[
\sum_{i+j+k=n} \delta_i(P) \delta_j(A) \delta_k(Q) = \sum_{i+j=n} \delta_i(P) \delta_j(PA) \delta_k(Q) + \sum_{i+j=n} \delta_i(P) \delta_j(AQ) \delta_k(Q) - \sum_{i+j+k=n} \delta_i(P) \delta_j(A) \delta_k(Q).
\]

By Lemma 2.2, we have for any idempotents \(P_1, \ldots, P_m, Q_1, \ldots, Q_s\) in \(A\) and every \(A \in A\),
\[
\delta_n(P_1 \cdots P_m AQ_1 \cdots Q_s) = \sum_{i+j=n} \delta_i(P_1 \cdots P_m A) \delta_j(Q_1 \cdots Q_s) + \sum_{i+j=n} \delta_i(P_1 \cdots P_m) \delta_j(AQ_1 \cdots Q_s) - \sum_{i+j+k=n} \delta_i(P_1 \cdots P_m) \delta_j(A) \delta_k(Q_1 \cdots Q_s).
\]

Setting \(A = I\) in the above relation, we obtain
\[
\delta_n(P_1 \cdots P_m Q_1 \cdots Q_s) = \sum_{i+j=n} \delta_i(P_1 \cdots P_m) \delta_j(Q_1 \cdots Q_s).
\]

This concludes the proof. \(\square\)
Let \mathcal{M} be an A-module and \mathcal{J} be an ideal of A. We say that \mathcal{J} is a separating set of \mathcal{M}, if for every $m, n \in \mathcal{M}$, $m\mathcal{J} = 0$ implies $m = 0$ and $\mathcal{J}n = 0$ implies $n = 0$.

Theorem 2.4. Let \mathcal{J} be a separating set of A. Suppose \mathcal{J} is contained in the linear span of the idempotents in A. If $D = (\delta_i)_{i \in \mathbb{N}}$ is a family of linear mappings from A into itself satisfying condition (*), then $D = (\delta_i)_{i \in \mathbb{N}}$ is a higher derivation.

Proof. When $n = 1$, by [7, Theorem 2.2], we have δ_1 is a derivation. Now we assume that
\[
\delta_m(AB) = \sum_{i+j=m} \delta_i(A)\delta_j(B),
\]
for all $A, B \in A$ and for all $1 \leq m < n$.

Since \mathcal{J} is contained in the linear span of the idempotents in A, by the condition (*), it follows that for any $S, T \in \mathcal{J}$,
\[
\delta_n(ST) = \sum_{i+j=n} \delta_i(S)\delta_j(T).
\]

For any $S, T \in \mathcal{J}$ and $A \in A$. Since \mathcal{J} is an ideal of A, it follows that
\[
\delta_n(SAT) = \delta_n((SA)T) = \sum_{i+j=n} \delta_i(SA)\delta_j(T). \tag{2.3}
\]

On the other hand, by the condition (*),
\[
\delta_n(SAT) = \sum_{i+j=n} \delta_i(SA)\delta_j(T) + \sum_{i+j=n} \delta_i(S)\delta_j(AT) - \sum_{i+j+k=n} \delta_i(S)\delta_j(A)\delta_k(T). \tag{2.4}
\]

Combining (2.3) and (2.4), we have
\[
0 = \sum_{i+j=n} \delta_i(S)\delta_j(AT) - \sum_{i+j+k=n} \delta_i(S)\delta_j(A)\delta_k(T)
\]
\[= S \delta_n(AT) - S \sum_{i+j=n} \delta_i(A) \delta_j(T). \]

Since \(\mathcal{J} \) is a separating set of \(\mathcal{A} \), it follows that
\[\delta_n(AT) = \sum_{i+j=n} \delta_i(A) \delta_j(T). \]

For any \(A, B \in \mathcal{A} \) and for any \(T \in \mathcal{J} \), we have
\[\delta_n(ABT) = \sum_{i+j=n} \delta_i(A) \delta_j(B) \delta_k(T) = \sum_{i+j+k=n} \delta_i(A) \delta_j(B) \delta_k(T) \]
\[= \sum_{i+j=n} \delta_i(A) \delta_j(B) T + \sum_{i+j=n \atop j \neq 1} \delta_i(AB) \delta_j(T). \]

On the other hand,
\[\delta_n(ABT) = \sum_{i+j=n} \delta_i(AB) \delta_j(T) = \delta_n(AB)T + \sum_{i+j=n \atop j \neq 1} \delta_i(AB) \delta_j(T). \]

So, we have
\[\delta_n(AB)T - \sum_{i+j=n} \delta_i(A) \delta_j(B) T = 0. \]

Since \(\mathcal{J} \) is a separating set of \(\mathcal{A} \), it follows that
\[\delta_n(AB) = \sum_{i+j=n} \delta_i(A) \delta_j(B). \]

Hence, \(D = (\delta_i)_{i \in \mathbb{N}} \) is a higher derivation. \(\square \)

A linear mapping \(f \) from \(\mathcal{A} \) to \(\mathcal{M} \) is called a left (resp., right) multiplier, if \(f(a) = f(1)a \) (resp., \(f(a) = af(1) \)), for every \(a \in \mathcal{A} \). Clearly, left multipliers are left-annihilator-preserving and right multipliers are right-annihilator-preserving. With certain hypotheses on \(\mathcal{A} \) and \(\mathcal{M} \), multipliers are the only annihilator-preserving maps from \(\mathcal{A} \) to \(\mathcal{M} \) (see [12]). When this happens, we have the following theorem:
Theorem 2.5. Let A be a unital algebra. Suppose that the only linear left-annihilator-preserving maps from A into itself are left multipliers and the only linear right-annihilator-preserving maps from A into itself are right multipliers. If $D = (\delta_i)_{i \in \mathbb{N}}$ is a family of linear mappings from A into itself such that \[\sum_{i+j+k=n} \delta_i(A)\delta_j(B)\delta_k(C) = 0 \] for any $A, B, C \in A$ with $AB = BC = 0$ and $\delta_n = (I) = 0$ for all $n \geq 1$, then $D = (\delta_i)_{i \in \mathbb{N}}$ is a higher derivation.

Proof. When $n = 1$, $A\delta_1(B)C = 0$ for any $A, B, C \in A$ with $AB = BC = 0$. By [12, Proposition 1.1], we have δ_1 is a derivation. Now we assume that

$$\delta_m(ST) = \sum_{i+j=m} \delta_i(S)\delta_j(T),$$

for all $S, T \in A$ and for all $1 \leq m < n$. Then

$$\sum_{i+j+k=n} \delta_i(A)\delta_j(B)\delta_k(C) = \sum_{i+j+k=n} \delta_i(A)\delta_j(B)\delta_k(C) + \sum_{i+j=n} \delta_i(A)\delta_j(B)C$$

$$= \sum_{i+j=n} \delta_i(A)\delta_j(B)C.$$

So $\sum_{i+j=n} \delta_i(A)\delta_j(B)C = 0$. Fix $A, B \in A$ with $AB = 0$, define a mapping f depending on A and B from A into itself by

$$f(T) = \sum_{i+j=n} \delta_i(A)\delta_j(BT),$$

for any $T \in A$. For any $C, D \in A$ with $CD = 0$, we have $ABC = BCD = 0$. So $f(C)D = 0$. By the hypotheses, f is a left multiplier, that is, $f(S) = f(I)S$ for any $S \in A$. Thus,

$$0 = \sum_{i+j=n} \delta_i(A)\delta_j(BS) - \sum_{i+j=n} \delta_i(A)\delta_j(B)S$$
\[
\begin{align*}
&= A\delta_n(BS) + \sum_{i+j+k=n, i \geq 1} \delta_i(A) \delta_j(B) \delta_k(S) - \sum_{i+j=n} \delta_i(A) \delta_j(B)S \\
&= A\delta_n(BS) + \sum_{i+j+k=n, i \geq 1, k \geq 1} \delta_i(A) \delta_j(B) \delta_k(S) + \sum_{i+j=n} \delta_i(A) \delta_j(B)S \\
&\quad - \sum_{i+j=n} \delta_i(A) \delta_j(B)S \\
&= A\delta_n(BS) - A \sum_{i+j=n} \delta_i(B) \delta_j(S) - A\delta_n(BS) \\
&= A\delta_n(BS) - A \sum_{i+j=n} \delta_i(B) \delta_j(S).
\end{align*}
\]

Let
\[
g(T) = \delta_n(TS) - \sum_{i+j=n} \delta_i(T) \delta_j(S).
\]

Then \(Ag(B) = 0\). By the hypotheses, \(g\) is a right multiplier, that is,
\(g(T) = Tg(1)\) for any \(T \in A\). Since \(g(I) = 0\), we have \(g(T) = 0\). Thus,
\[
\delta_n(TS) = \sum_{i+j=n} \delta_i(T) \delta_j(S).
\]

Hence, \(D = (\delta_i)_{i \in \mathbb{N}}\) is a higher derivation. \(\square\)

References

JIANBIN GUO

